The Comparative Advantage of Cities

Donald R. Davis Jonathan I. Dingel

Columbia University and NBER

Chicago Booth

October 2014

Davis & Dingel (Columbia/Chicago Booth) The Comparative Advantage of Cities

What determines the spatial distribution of...

- Skills
- Occupations
- Industries

What determines the spatial distribution of...

- Skills
- Occupations
- Industries

In particular, how are these related to cities' sizes?

A first look: Wood product manufacturing

- Consider wood product manufacturing, whose employees average 11.8 years of schooling
- Plot employment in wood products against population for 276 metropolitan areas
- Will wood products be manufactured in every city?
- Will wood product employment be decreasing in city size, increasing in city size, or attain an interior maximum?

October 2014 4 / 45

Now consider:

- Machinery manufacturing (12.9 years of schooling)
- Computer and electronic products (14.1 years of schooling)

October 2014 6 / 45

Comparative Advantage of Cities: Theory

- We describe comparative advantage of cities as jointly governed by individuals' comparative advantage and locational choices
- Cities endogenously differ in TFP due to agglomeration
- More skilled individuals are more willing to pay for more attractive locations
- Larger cities are skill-abundant in equilibrium
- By individuals' comparative advantage, larger cities specialize in skill-intensive activities
- Under a further condition, larger cities are larger in all activities

Comparative Advantage of Cities: Empirics (1/2)

- Use US data on skills and sectors
- Characterize the comparative advantage of cities with two tests
- Elasticity test of variation in relative population/employment
 - Compare elasticities of different skills, sectors
 - Steeper slope in log-log plot is higher elasticity
 - Elasticities may be positive for all sectors

Comparative Advantage of Cities: Empirics (2/2)

Pairwise comparison test (LSM)

• The function $f(\omega, c)$ is log-supermodular if

 $c > c', \omega > \omega' \Rightarrow f(\omega, c)f(\omega', c') \ge f(\omega', c)f(\omega, c')$

- Our theory says skill distribution $f(\omega, c)$ and sectoral employment distribution $f(\sigma, c)$ are log-supermodular
- For example, population of skill ω in city c is f(ω, c). Check whether, for c > c', ω > ω',

$$rac{f(\omega,c)}{f(\omega',c)} \geq rac{f(\omega,c')}{f(\omega',c')}$$

Are larger cities larger in all sectors?

• Check if $c > c' \Rightarrow f(\sigma, c) \ge f(\sigma, c')$

- Distribution of heterogeneous skills: Behrens, Duranton, and Robert-Nicoud (2014); Eeckhout, Pinheiro, and Schmidheiny (2014); Davis and Dingel (2012); Acemoglu and Autor (2011); Baum-Snow and Pavan (2011)
- Assignment models of differential rents: Ricardo (1817), Alonso-Muth-Mills, Brueckner (1987); von Thünen (1826); Sattinger (1979); Fujita and Thisse (2002); Behrens and Robert-Nicoud (2011); Behrens, Duranton, and Robert-Nicoud (2014)
- Assignment models of comparative advantage: Sattinger (1975); Teulings (1995); Costinot (2009); Costinot and Vogel (2010, 2014)
- Models of cities' industrial structure: Henderson (1974); Duranton and Puga (2001); Helsley and Strange (2012)
- A structural interpretation of prior estimates of sectors' population elasticities: Henderson (1983, 1991, 1997); Holmes and Stevens (2004)

Outline

1 Theory

2 Empirical approach and data description

3 Empirical results

- Elasticities tests
- Pairwise comparisons tests
- Larger cities are larger in all skills and sectors

4 Conclusions

Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Model components

Producers

- Skills: Continuum of skills indexed by ω (educational attainment)
- Sectors: Continuum of sectors σ (occupations, industries)
- Goods: Freely traded intermediates assembled into final good
- All markets are perfectly competitive

Places

- Cities are ex ante identical
- Locations within cities vary in their desirability
- TFP depends on agglomeration of "scale and skills"

$$A(c) = J\left(L, \int_{\omega \in \Omega} j(\omega)f(\omega, c) \mathrm{d}\omega\right)$$

Analytical tool: log-supermodularity

• The skill distribution $f(\omega, c)$ is log-supermodular if $c > c', \omega > \omega' \Rightarrow f(\omega, c)f(\omega', c') \ge f(\omega', c)f(\omega, c')$

Individual optimization

Perfectly mobile individuals simultaneously choose

- A sector σ of employment
- A city with total factor productivity A(c)
- A location τ (distance from ideal) within city c

The productivity of an individual of skill ω is

$$q(c,\tau,\sigma;\omega) = A(c)T(\tau)H(\omega,\sigma)$$

Utility is consumption of the numeraire final good, which is income minus locational cost

$$U(c,\tau,\sigma;\omega) = q(c,\tau,\sigma;\omega)p(\sigma) - r(c,\delta)$$

= $A(c)T(\tau)H(\omega,\sigma))p(\sigma) - r(c,\delta)$

• Individuals' choices of locations and sectors are separable:

$$\arg\max_{\sigma} \underbrace{\mathcal{A}(c)T(\tau)}_{\text{locational}} \underbrace{\mathcal{H}(\omega,\sigma)p(\sigma)}_{\text{sectoral}} - r(c,\delta) = \arg\max_{\sigma} \mathcal{H}(\omega,\sigma)p(\sigma)$$

- $H(\omega,\sigma)$ is log-supermodular in ω,σ and strictly increasing in ω
- Comparative advantage assigns high- ω individuals to high- σ sectors (Costinot, 2009; Costinot and Vogel, 2010)
- Absolute advantage makes more skilled have higher incomes $(G(\omega) = \max_{\sigma} H(\omega, \sigma)p(\sigma) \text{ is increasing})$

Locational choice

- A location's attractiveness $\gamma = A(c)T(\tau)$ depends on c and au
- *T*'(τ) < 0 may be interpreted as commuting to CBD, proximity to productive opportunities, or consumption value
- More skilled are more willing to pay for more attractive locations
- Equally attractive locations have same rental price and skill type
- Location in higher-TFP city is farther from ideal desirability

$$\gamma = A(c)T(\tau) = A(c')T(\tau')$$
$$A(c) > A(c') \Rightarrow \tau > \tau'$$

 Locational hierarchy: A smaller city's locations are a subset of larger city's in terms of attractiveness: A(c)T(0) > A(c')T(0)

Equilibrium distributions

- Skill and sectoral distributions reflect distribution of locational attractiveness: Higher- γ locations occupied by higher- ω individuals who work in higher- σ sectors
- \bullet Locational hierarchy \Rightarrow hierarchy of skills and sectors
- The distributions f(ω, c) and f(σ, c) are log-supermodular if and only if the supply of locations with attractiveness γ in city c, s(γ, c), is log-supermodular

$$s(\gamma, c) = egin{cases} rac{1}{A(c)} V\left(rac{\gamma}{A(c)}
ight) & ext{if } \gamma \leq A(c) T(0) \ 0 & ext{otherwise} \end{cases}$$

where $V(z) \equiv -\frac{\partial}{\partial z} S(T^{-1}(z))$ is the supply of locations with innate desirability τ such that $T(\tau) = z$

When is $s(\gamma, c)$ log-supermodular?

Proposition (Locational attractiveness distribution)

The supply of locations of attractiveness γ in city c, $s(\gamma, c)$, is log-supermodular if and only if the supply of locations with innate desirability $T^{-1}(z)$ within each city, V(z), has a decreasing elasticity.

- Links each city's exogeneous distribution of locations, V(z), to endogenous equilibrium locational supplies s(γ, c)
- Informally, ranking relative supplies is ranking elasticities of V(z)

$$s(\gamma, c) \propto V\left(\frac{\gamma}{A(c)}\right) \Rightarrow \frac{\partial \ln s(\gamma, c)}{\partial \ln \gamma} = \frac{\partial \ln V\left(\frac{\gamma}{A(c)}\right)}{\partial \ln z}$$

• Satisfied by the canonical von Thünen geography

The Comparative Advantage of Cities

Corollary (Skill and employment distributions)

If V(z) has a decreasing elasticity, then $f(\omega, c)$ and $f(\sigma, c)$ are log-supermodular.

- Larger cities are skill-abundant in equilibrium (satisfies Assumption 2 in Costinot 2009)
- Locational productivity differences are Hicks-neutral in equilibrium (satisfies Definition 4 in Costinot 2009)
- $H(\omega, \sigma)$ is log-supermodular (Assumption 3 in Costinot 2009)

Corollary (Output and revenue distributions)

If V(z) has a decreasing elasticity, then sectoral output $Q(\sigma, c)$ and revenue $R(\sigma, c) \equiv p(\sigma)Q(\sigma, c)$ are log-supermodular.

The Comparative Advantage of Cities

Corollary (Skill and employment distributions)

If V(z) has a decreasing elasticity, then $f(\omega, c)$ and $f(\sigma, c)$ are log-supermodular.

- Larger cities are skill-abundant in equilibrium (satisfies Assumption 2 in Costinot 2009)
- Locational productivity differences are Hicks-neutral in equilibrium (satisfies Definition 4 in Costinot 2009)
- $H(\omega, \sigma)$ is log-supermodular (Assumption 3 in Costinot 2009)

Corollary (Output and revenue distributions)

If V(z) has a decreasing elasticity, then sectoral output $Q(\sigma, c)$ and revenue $R(\sigma, c) \equiv p(\sigma)Q(\sigma, c)$ are log-supermodular.

When are bigger cities bigger in everything?

We identify a sufficient condition under which a larger city has a larger supply of locations of a given attractiveness

Proposition

For any A(c) > A(c'), if V(z) has a decreasing elasticity that is less than -1 at $z = \frac{\gamma}{A(c)}$, $s(\gamma, c) \ge s(\gamma, c')$.

Now apply this result to the least-attractive locations, so larger cities are larger in all skills and sectors

Corollary

If V(z) has a decreasing elasticity that is less than -1 at $z = \frac{K^{-1}(\omega)}{A(c)} = \frac{\gamma}{A(c)}$, A(c) > A(c') implies $f(\omega, c) \ge f(\omega, c')$ and $f(M(\omega), c) \ge f(M(\omega), c') \ \forall \omega \in \Omega$.

Empirical approach and data description

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Empirical tests

Our theory says $f(\omega, c)$ and $f(\sigma, c)$ are log-supermodular. Two tests to describe skill and sectoral employment distributions:

- Elasticities test:
 - Compare population elasticities estimated via linear regression
 - More skilled types should have higher population elasticities
 - More skill-intensive sectors should have higher population elasticities
- Pairwise comparisons test:
 - Compare any two cities and any two skills/sectors
 - Relative population of more skilled should be higher in larger city: $c > c', \omega > \omega' \Rightarrow \frac{f(\omega,c)}{f(\omega',c)} \ge \frac{f(\omega,c')}{f(\omega',c')}$
 - Relative employment of more skill-intensive sector should be higher in larger city: $c > c', \sigma > \sigma' \Rightarrow \frac{f(\sigma,c)}{f(\sigma',c)} \ge \frac{f(\sigma,c')}{f(\sigma',c')}$
 - "Bin" together cities ordered by size and compare bins similarly

Data: Skills

- Proxy skills by educational attainment, assuming $f(edu, \omega, c)$ is log-supermodular in edu and ω (Costinot and Vogel 2010)
- Following Acemoglu and Autor (2011), we use a minimum of three skill groups.

	Population	Percent		Population	Percent
Skill (3 groups)	share	US-born	Skill (9 groups)	share	US-born
High school or less	.35	.77	Less than high school	.03	.21
			High school dropout	.07	.69
			High school graduate	.24	.87
Some college	.32	.88	College dropout	.24	.89
			Associate's degree	.08	.87
Bachelor's or more	.33	.85	Bachelor's degree	.21	.86
			Master's degree	.08	.83
			Professional degree	.03	.81
			Doctoral degree	.01	.69

Population shares and percentage US-born are percentages of full-time, full-year prime-age workers. Source: Census 2000 microdata via IPUMS-USA

Data: Sectors

- 21 manufacturing industries (3-digit NAICS, 2000 County Business Patterns)
- 22 occupations (2-digit SOC, 2000 BLS Occupational Employment Statistics)
- Infer sectors' skill intensities from average years of schooling of workers employed in them

	Skill		Skill
Occupational category	intensity	Manufacturing industry	intensity
Farming, Fishing, and Forestry	9.3	Apparel	10.7
Building & Grounds Cleaning & Maintenance	10.9	Textile Product Mills	11.4
Food Preparation and Serving	11.4	Leather and Allied Product	11.7
Construction and Extraction	11.5	Textile Mills	11.7
Production	11.6	Furniture and Related Products	11.7
Healthcare Practitioners and Technical	15.6	Beverage and Tobacco Products	13.1
Community and Social Services	15.8	Transportation Equipment	13.2
Education, Training, and Library	16.5	Petroleum and Coal Products	13.5
Life, Physical, and Social Science	17.1	Computer & Electronic Products	14.1
Legal	17.3	Chemical	14.1

Data source: Census 2000 microdata via IPUMS-USA

Empirical results

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Elasticities tests

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Table: Population elasticities of educational groups

Dep var: $\ln f(\omega, c)$	All	US-born
β_{ω_1} HS or less	0.96	0.90
imes log population	(0.011)	(0.016)
β_{ω_2} Some college	1.00	0.97
imes log population	(0.010)	(0.012)
β_{ω_3} BA or more	1.10	1.07
imes log population	(0.015)	(0.017)

Standard errors, clustered by MSA, in parentheses.

Sample is all full-time, full-year employees residing in metropolitan areas.

Three skill groups

Nine skill groups

Figure: Population elasticities of educational groups

October 2014 29 / 45

Nine skill groups

Table

Figure: Population elasticities of educational groups

Why the difference between skill distribution of population as a whole and US-born individuals?

- One possibility: Extreme-skill complementarity (Eeckhout, Pinheiro, and Schmidheiny, 2014)
- Another possibility: Ethnic enclaves
- $\bullet\,$ In 1980 foreign-born were 6% of US population; in 2000, $11\%\,$
- In 1980 foreign-born were 32% of lowest skill group; in 2000, they were 79%

Spatial distribution of skills in 1980

Figure: Population elasticities of educational groups, 1980

Occupations' elasticities and skill intensities

Industry population elasticities and skill intensities

210 elasticity comparisons yield 87% success rate C Table

Pairwise comparisons tests

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Pairwise comparisons test

If $f(\nu, c)$ is log-supermodular, where $\nu = \omega$ or $\nu = \sigma$,

- $c > c', \nu > \nu' \Rightarrow \ln f(\nu, c) + \ln f(\nu', c') \ge \ln f(\nu', c) + \ln f(\nu, c')$
- if C and C' are distinct sets and $C \ge_s C'$, then $\forall \nu > \nu'$

$$\sum_{c\in\mathcal{C}}\ln f(
u,c)+\sum_{c'\in\mathcal{C}'}\ln f(
u',c')\geq \sum_{c\in\mathcal{C}}\ln f(
u',c)+\sum_{c'\in\mathcal{C}'}\ln f(
u,c')$$

Example: Chicago > Kalamazoo; Bachelor's degree > HS graduate

•
$$c > c', \omega > \omega' \Rightarrow \frac{f(\omega,c)}{f(\omega',c)} \ge \frac{f(\omega,c')}{f(\omega',c')}$$

• $\frac{f(BA,Chicago)}{f(HSG,Chicago)} = \frac{642,776}{611,054} > \frac{24,178}{36,425} = \frac{f(BA,Kalamazoo)}{f(HSG,Kalamazoo)}$ is true

If there are *n* (bins of) cities and *m* skills/sectors, there are $\frac{n(n-1)}{2} \times \frac{m(m-1)}{2}$ pairwise comparisons.

Pairwise weights

- With idiosyncratic errors, comparisons of cities of similar size and sectors of similar skill intensity are less informative
- Comparing Chicago (population 9 million) to Des Moines (population 456 thousand) is much more informative about the relevance of our theory than Des Moines vs Kalamazoo (population 453 thousand)
- In addition to simple success rate, we also report a weighted average of the success rate, weighting by differences in cities' log populations and differences in skill intensities

Davis & Dingel (Columbia/Chicago Booth)

The Comparative Advantage of Cities

October 2014 36

Pairwise comparisons: 22 occupations

Pairwise comparisons: 21 manufacturing industries

Larger cities are larger in all skills and sectors

- Larger cities are more populous in all educational attainment categories and employ more people in all sectors
- Every estimated population elasticity is strongly positive
- For manufacturing industries, the prediction that $c > c' \Rightarrow f(\sigma, c) \ge f(\sigma, c')$ is true in 77% of 796,950 cases
- 16 industries attain maximal size in NYC, LA, or Chicago
- Only industry outside top ten is textile mills (maximal in #52 Greenville-Spartanburg-Anderson)
- For occupations, $c > c' \Rightarrow f(\sigma,c) \geq f(\sigma,c')$ true for 88%
- 19 of the 22 occupations attain their maximal size in NYC

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusions: Theory

- Orban
 - Extends systems-of-cities approach to incorporate substantive locational heterogeneity within cities
 - Predicts that cities are neither completely specialized nor completely diversified
 - Predicts the pattern of economic activity based on observable characteristics of cities and sectors
- Trade
 - Integrate endogenous spatial distribution of skills with high-dimensional theory of comparative advantage
 - At equilibrium, economy exhibits properties of Costinot (2009) F-economy
 - Links ordering of locations by skills to city size
- Predict distributions of skills and sectors across cities are log-supermodular
- Derive empirically implementable tests of the theory

- More disaggregated examination of distributions of skills and sectoral employment across cities than existing literature
- Provide evidence that LSM a good description of skills and cities
 - Theory-consistent elasticities in 35/36 comparisons with nine US-born skill groups
 - Stronger than simple correlation of city size and college share
 - 1980 data contra EPS's "extreme skill complementarity"
- Provide evidence that LSM plays a substantive role in cross-city distributions of sectoral employment
 - Theory-consistent elasticities in more than 80% of comparisons for both occupations and manufacturing industries

Thank you

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$q(c, \tau, \sigma; \omega) = A(c)H(\omega, \sigma)$$

$$U(c, \tau, \sigma; \omega) = T(\tau)[A(c)H(\omega, \sigma)p(\sigma) - r(c, \tau)]$$

- Lower-au locations complement consumption of the final good
- Higher-income individuals more willing to pay for more attractive location
- This consumption interpretation changes the expression for equilibrium rental prices
- This interpretation does not change the two propositions describing cities' sizes, skills, and sectors

Equilibrium (1/2)

- Denote the quantity of individuals of skill ω residing in city c at location τ and working in sector σ by L × f(ω, c, τ, σ).
- Individuals maximize utilities by choices of city, location, and sector

$$f(\omega, c, \tau, \sigma) > 0 \iff \{c, \tau, \sigma\} \in \arg \max U(c, \tau, \sigma; \omega) \quad (1)$$

• Final-good producers maximize profits by demanding

$$Q(\sigma) = I\left(\frac{p(\sigma)}{B(\sigma)}\right)^{-\epsilon}$$
(2)

• Absentee landlords maximize profits in Bertrand competition so that unoccupied locations have rental prices of zero

$$r(c,\tau) \times \left(S'(\tau) - L \int_{\sigma \in \Sigma} \int_{\omega \in \Omega} f(\omega, c, \tau, \sigma) d\omega d\sigma \right) = 0 \,\forall c \,\forall \tau \quad (3)$$

Equilibrium (2/2)

Agglomeration occurs and markets clear:

$$S'(\tau) \ge L \int_{\omega \in \Omega} \int_{\sigma \in \Sigma} f(\omega, c, \tau, \sigma) d\sigma d\omega \quad \forall c \ \forall \tau$$
 (4)

$$Q(\sigma) = L \sum_{c \in \mathbb{C}} \int_{\omega \in \Omega} \int_{\tau \in \mathcal{T}} q(c, \tau, \sigma; \omega) f(\omega, c, \tau, \sigma) d\omega d\tau \quad \forall \sigma$$
 (5)

n

$$f(\omega) = \sum_{c \in \mathbb{C}} f(\omega, c) = \sum_{c \in \mathbb{C}} \int_{\sigma \in \Sigma} \int_{\tau \in \mathcal{T}} f(\omega, c, \tau, \sigma) d\tau d\sigma \quad \forall \omega$$
(6)
$$A(c) = J(L \int_{\omega \in \Omega} j(\omega) f(\omega, c) d\omega) \quad \forall c$$
(7)

A competitive equilibrium is a set of functions $Q: \Sigma \to \mathbb{R}^+$, $f: \Sigma \times \mathbb{C} \times \Delta \times \Omega \to \mathbb{R}^+$, $r: \mathbb{C} \times \Delta \to \mathbb{R}^+$, and $p: \Sigma \to \mathbb{R}^+$ such that conditions (1) through (7) hold.

Nine skill groups

Population	Percent		Populati	on elasticities
share	US-born	Dep var: $\ln f(\omega, c)$	All	US-born
.03	.21	β_{ω_1} Less than high school	1.17	0.91
		imes log population	(0.039)	(0.028)
.07	.69	β_{ω_2} High school dropout	1.03	0.94
		imes log population	(0.017)	(0.020)
.24	.87	β_{ω_3} High school graduate	0.93	0.90
		imes log population	(0.013)	(0.016)
.24	.89	β_{ω_4} College dropout	1.00	0.98
		imes log population	(0.011)	(0.013)
.08	.87	β_{ω_5} Associate's degree	1.00	0.96
		imes log population	(0.014)	(0.016)
.21	.86	β_{ω_6} Bachelor's degree	1.10	1.07
		imes log population	(0.015)	(0.017)
.08	.83	β_{ω_7} Master's degree	1.12	1.09
		imes log population	(0.018)	(0.019)
.03	.81	β_{ω_8} Professional degree	1.12	1.09
		imes log population	(0.018)	(0.019)
.01	.69	β_{ω_9} PhD	1.11	1.06
		\times log population	(0.035)	(0.033)

For US-born, only reject $\beta_{\omega} \ge \beta_{\omega'} \iff \omega \ge \omega'$ in $\beta_{\omega_{3\square}} < \beta_{\omega_{2}}$ comparison.

Davis & Dingel (Columbia/Chicago Booth)

Spatial distribution of skills in 1980

Population	Percent		Populati	on elasticities
share	US-born	Dep var: $\ln f(\omega, c)$	All	US-born
.06	.67	β_{ω_1} Less than grade 9	0.99	0.89
		imes log population	(0.028)	(0.030)
.11	.91	β_{ω_2} Grades 9-11	1.00	0.98
		imes log population	(0.019)	(0.021)
.33	.94	β_{ω_3} Grade 12	0.97	0.95
		imes log population	(0.013)	(0.015)
.08	.94	eta_{ω_4} 1 year college	1.04	1.03
		imes log population	(0.018)	(0.018)
.13	.92	β_{ω_5} 2-3 years college	1.09	1.07
		imes log population	(0.018)	(0.018)
.13	.92	β_{ω_6} 4 years college	1.10	1.08
		\times log population	(0.018)	(0.018)
.13	.90	β_{ω_7} 5+ years college	1.13	1.11
		\times log population	(0.022)	(0.022)

Standard errors, clustered by MSA, in parentheses

Sample is all full-time, full-year employees residing in 253 metropolitan areas.

Occupations' population elasticities

β_{σ_1} Farming, Fishing, and Forestry Occupations	0.803	$\beta_{\sigma_{12}}$ Sales and Related Occupations	1.037
\times log population	(0.048)	× log population	(0.010)
β_{σ_2} Building and Grounds Cleaning and Maintenance Occupations	1.039	β_{σ_0} Management occupations	1.082
\times log population	(0.011)	× log population	(0.015)
β_{σ_3} Food Preparation and Serving Occupations	0.985	$\beta_{\sigma_{14}}$ Arts, Design, Entertainment, Sports, and Media Occupations	1.158
× log population	(0.011)	× log population	(0.019)
β_{σ_4} Construction and Extraction Occupations	1.037	$\beta_{\sigma_{15}}$ Business and Financial Operations Occupations	1.204
× log population	(0.014)	× log population	(0.018)
β_{σ_5} Production Occupations	1.045	$\beta_{\sigma_{16}}$ Architecture and Engineering Occupations	1.209
\times log population	(0.025)	\times log population	(0.026)
β_{σ_6} Transportation and Material Moving Occupations	1.061	$\beta_{\sigma_{17}}$ Computer and Mathematical Occupations	1.395
\times log population	(0.014)	\times log population	(0.034)
β_{σ_7} Installation, Maintenance, and Repair Workers	1.015	$\beta_{\sigma_{18}}$ Healthcare Practitioners and Technical Occupations	1.001
\times log population	(0.011)	\times log population	(0.014)
β_{σ_8} Healthcare Support Occupations	0.980	$\beta_{\sigma_{19}}$ Community and Social Services Occupations	0.986
\times log population	(0.013)	\times log population	(0.020)
β_{σ_0} Personal Care and Service Occupations	1.065	$\beta_{\sigma_{20}}$ Education, Training, and Library Occupations	1.011
\times log population	(0.017)	\times log population	(0.017)
$\beta_{\sigma_{10}}$ Office and Administrative Support Occupations	1.081	$\beta_{\sigma_{21}}$ Life, Physical, and Social Science Occupations	1.170
\times log population	(0.010)	× log population	(0.030)
$\beta_{\sigma_{11}}$ Protective Service Occupations	1.123	$\beta_{\sigma_{22}}$ Legal Occupations	1.200
\times log population	(0.014)	\times log population	(0.022)
Observations	5943	Observations	5943
R-squared	0.931	R-squared	0.931
Occupation FE	Yes	Occupation FE	Yes

Standard errors, clustered by MSA, in parentheses

Industries' population elasticities

β_{σ_1} Apparel Manufacturing	1.237	1.024	$\beta_{\sigma_{11}}$ Nonmetallic Mineral Product Manufacturing	1.018	0.955
< log population	(0.070)	(0.148)	× log population	(0.036)	(0.042)
β_{σ_2} Textile Product Mills	1.125	0.905	$\beta_{\sigma_{12}}$ Paper Manufacturing	0.901	0.539
< log population	(0.056)	(0.135)	× log population	(0.063)	(0.104)
β_{σ_3} Leather and Allied Product Manufacturing	0.743	0.147	$\beta_{\sigma_{13}}$ Printing and Related Support Activities	1.202	1.122
< log population	(0.099)	(0.284)	× log population	(0.036)	(0.047)
β_{σ_4} Furniture and Related Product Manufacturing	1.120	1.000	$\beta_{\sigma_{14}}$ Electrical Equipment, Appliance & Component	1.159	0.813
< log population	(0.050)	(0.076)	× log population	(0.074)	(0.111)
β_{σ_5} Textile Mills	0.823	0.352	$\beta_{\sigma_{15}}$ Machinery Manufacturing	1.071	0.960
× log population	(0.105)	(0.208)	× log population	(0.055)	(0.069)
β_{σ_6} Wood Product Manufacturing	0.848	0.608	$\beta_{\sigma_{16}}$ Miscellaneous Manufacturing	1.224	1.208
< log population	(0.055)	(0.085)	× log population	(0.044)	(0.059)
β _{σ7} Fabricated Metal Product Manufacturing	1.094	1.036	$\beta_{\sigma_{17}}$ Beverage and Tobacco Product Manufacturing	1.168	1.010
× log population	(0.048)	(0.050)	× log population	(0.065)	(0.147)
β _{σ8} Food Manufacturing	0.953	0.864	$\beta_{\sigma_{18}}$ Transportation Equipment Manufacturing	1.254	0.940
< log population	(0.050)	(0.067)	× log population	(0.075)	(0.101)
β_{σ_0} Plastics and Rubber Products Manufacturing	1.105	0.975	$\beta_{\sigma_{19}}$ Petroleum and Coal Products Manufacturing	0.951	0.393
× log population	(0.056)	(0.070)	× log population	(0.074)	(0.308)
β _{σ10} Primary Metal Manufacturing	0.997	0.449	$\beta_{\sigma_{20}}$ Computer and Electronic Product Manufacturing	1.453	1.254
× log population	(0.078)	(0.107)	× log population	(0.075)	(0.108)
			$\beta_{\sigma_{21}}$ Chemical Manufacturing	1.325	0.992
			× log population	(0.065)	(0.098)
Observations	5406	2130	Observations	5406	2130
R-squared	0.564	0.541	R-squared	0.564	0.541
ndustry FE	Yes	Yes	Industry FE	Yes	Yes
Only uncensored obs		Yes	Only uncensored obs		Yes
Standa	ard error	s, cluster	red by MSA, in parentheses		

Bins Birthplace Weights some college HS or less vs HS or less comparisons Average 2 All Unweighted 1 1 3 1 2 All Population difference 1 1 3 1 2 US-born Population difference 1 1 1 3 1 2 US-born Population difference 1 1 1 3 1 3 All Unweighted 1 1 1 9 1 3 US-born Population difference 1 1 9 1 5 All Population difference 1 1 900 30 .967 5 US-born Population difference 1 1 .900 30 .967 5 US-born Population difference 1 1 .900 30 .967 5 US-born Population difference 1 <th></th> <th></th> <th></th> <th>College vs</th> <th>College vs</th> <th>Some college</th> <th>Total</th> <th></th>				College vs	College vs	Some college	Total	
2 All Population difference 1 1 1 3 1 2 US-born Unweighted 1 1 1 3 1 3 All Unweighted 1 1 1 3 1 3 All Unweighted 1 1 1 9 1 3 All Population difference 1 1 1 9 1 3 US-born Population difference 1 1 1 9 1 5 All Population difference 1 1 900 30 .967 5 US-born Unweighted 1 1 .900 30 .967 5 US-born Unweighted 1 1 .900 30 .967 5 US-born Unweighted .764 .844 .844 .711 .35 .908 10 All Population difference .92	Bins	Birthplace	Weights			0	comparisons	Average
2 US-born Unweighted 1 1 1 3 1 2 US-born Population difference 1 1 1 3 1 3 All Unweighted 1 1 1 9 1 3 All Population difference 1 1 1 9 1 3 US-born Population difference 1 1 1 9 1 5 All Population difference 1 1 900 30 .967 5 MI Population difference 1 1 .900 30 .967 5 US-born Population difference 1 1 .900 30 .967 5 US-born Population difference 1 1 .900 30 .967 10 All Population difference .927 .944 .852 .135 .800 10 US-born Unweight	2	All	Unweighted	<u>`</u>		1		
2 US-born Population difference 1 1 3 1 3 All Unweighted 1 1 1 9 1 3 All Population difference 1 1 1 9 1 3 All Population difference 1 1 1 9 1 3 US-born Population difference 1 1 1 9 1 3 US-born Unweighted 1 1 900 30 .967 5 All Dopulation difference 1 1 .900 30 .967 5 US-born Population difference 1 1 .905 30 .985 10 All Population difference 1 1 .955 .30 .985 10 All Population difference .927 .944 .852 .135 .830 10 US-born Population difference	2	All	Population difference	1	1	1	3	1
3 All Unweighted 1 1 1 9 1 3 All Population difference 1 1 1 9 1 3 US-born Unweighted 1 1 1 9 1 5 All Unweighted 1 1 1 9 1 5 All Population difference 1 1 900 30 .967 5 US-born Population difference 1 1 .900 30 .967 5 US-born Unweighted 1 1 .900 30 .967 5 US-born Population difference 1 1 .900 30 .967 10 All Unweighted .844 .844 .711 .135 .800 10 VS-born Unweighted .768 .726 .632 .1305 .718 30 All Unweighted .768	2	US-born	Unweighted	1	1	1	3	1
3 All Population difference 1 1 1 9 1 3 US-born Unweighted 1 1 1 9 1 5 All Unweighted 1 1 1 9 1 5 All Unweighted 1 1 900 30 .967 5 All Population difference 1 1 .900 30 .967 5 US-born Unweighted 1 1 .900 30 .967 5 US-born Population difference 1 1 .900 30 .967 10 All Population difference .277 .944 .852 .135 .800 10 US-born Population difference .927 .956 .870 .135 .830 10 US-born Unweighted .784 .684 .1305 .716 30 US-born Unweighted .	2	US-born	Population difference	1	1	1	3	1
3 US-born Unweighted 1 1 1 9 1 3 US-born Population difference 1 1 1 9 1 3 US-born Population difference 1 1 1 9 1 5 All Unweighted 1 1 900 30 .967 5 US-born Population difference 1 1 .905 30 .965 5 US-born Population difference 1 1 .905 30 .9685 10 All Unweighted .844 .844 .711 1.35 .800 10 US-born Unweighted .844 .889 .756 .135 .830 10 US-born Population difference .927 .956 .870 .135 .818 30 All Population difference .887 .726 .632 .305 .818 30 US-b	3	All	Unweighted	1	1	1	9	1
3 US-born Population difference 1 1 9 1 5 All Unweighted 1 1 900 30 967 5 All Population difference 1 1 955 30 9855 5 US-born Unweighted 1 1 955 30 967 5 US-born Population difference 1 1 955 30 9685 10 All Unweighted .844 .844 .711 135 .800 10 VS-born Population difference .927 .944 .852 .135 .908 10 US-born Population difference .927 .944 .852 .135 .918 30 US-born Unweighted .768 .726 .632 .1305 .819 30 US-born Unweighted .768 .726 .632 .1305 .868 30 US-born	3	All	Population difference	1	1	1	9	1
5 All Unweighted 1 1 .900 30 .967 5 All Population difference 1 1 .955 30 .967 5 All Population difference 1 1 .955 30 .967 5 US-born Unweighted 1 1 .900 30 .967 5 US-born Population difference 1 1 .900 30 .967 10 All Population difference .844 .844 .711 .135 .908 10 US-born Population difference .927 .944 .852 .135 .830 10 US-born Unweighted .768 .726 .632 .1305 .719 30 All Unweighted .778 .726 .632 .1305 .819 30 US-born Population difference .893 .898 .812 .1305 .868 <td< td=""><td>3</td><td>US-born</td><td>Unweighted</td><td>1</td><td>1</td><td>1</td><td>9</td><td>1</td></td<>	3	US-born	Unweighted	1	1	1	9	1
5 All Population difference 1 1 .955 30 .985 5 US-born Unweighted 1 1 .900 30 .967 5 US-born Population difference 1 1 .905 30 .9685 10 All Unweighted .844 .844 .711 135 .800 10 All Population difference .927 .944 .852 .135 .830 10 US-born Unweighted .844 .889 .756 .135 .830 10 US-born Population difference .927 .956 .870 .135 .810 30 All Population difference .887 .756 .632 .1305 .819 30 US-born Unweighted .784 .694 .1305 .868 30 US-born Unweighted .684 .677 .58 .12.015 .674 90	3	US-born	Population difference	1	1	1	9	1
5 US-born Unweighted 1 1 .900 30 .967 5 US-born Population difference 1 1 .955 30 .985 10 All Unweighted .844 .844 .711 .135 .800 10 All Population difference .927 .944 .852 .135 .908 10 US-born Unweighted .844 .889 .756 .135 .908 10 US-born Population difference .927 .956 .870 .135 .918 00 US-born Unweighted .768 .726 .632 .1305 .719 30 All Unweighted .768 .726 .632 .1305 .819 30 US-born Population difference .893 .898 .812 .1305 .868 90 All Population difference .893 .689 .633 12.015 .670 <td>5</td> <td>All</td> <td>Unweighted</td> <td>1</td> <td>1</td> <td>.900</td> <td>30</td> <td>.967</td>	5	All	Unweighted	1	1	.900	30	.967
5 US-born Population difference 1	5	All	Population difference	1	1	.955	30	.985
10 All Unweighted .844 .844 .711 135 .800 10 All Population difference .927 .944 .852 .135 .908 10 US-born Unweighted .844 .889 .756 .135 .830 10 US-born Population difference .927 .956 .870 .135 .918 30 All Unweighted .768 .726 .632 .1305 .819 30 All Population difference .887 .853 .716 .1305 .819 30 US-born Unweighted .782 .784 .694 .305 .753 30 US-born Unweighted .684 .667 .58 .12.015 .644 90 All Unweighted .664 .667 .58 .12.015 .670 90 US-born Unweighted .679 .693 .639 .12.015 .773	5	US-born	Unweighted	1	1	.900	30	.967
All Population difference 927 .944 .852 135 .908 10 US-born Unweighted .844 .889 .756 .135 .908 10 US-born Population difference .927 .956 .870 .135 .918 10 US-born Population difference .927 .956 .870 .135 .918 30 All Unweighted .768 .726 .632 .1305 .709 30 All Population difference .887 .853 .716 .1305 .868 30 US-born Population difference .893 .898 .812 .1305 .868 90 All Population difference .893 .696 .532 1.2,015 .674 90 US-born Unweighted .679 .693 .639 12,015 .677 90 US-born Unweighted .679 .693 .639 .2,015 .677 </td <td>5</td> <td>US-born</td> <td>Population difference</td> <td>1</td> <td>1</td> <td>.955</td> <td>30</td> <td>.985</td>	5	US-born	Population difference	1	1	.955	30	.985
In Us-born Unweighted .844 .889 .756 135 .830 10 US-born Population difference .927 .956 .870 135 .918 30 All Unweighted .768 .726 .632 .1305 .709 30 All Population difference .887 .853 .716 .1305 .819 30 US-born Population difference .833 .898 .812 .1305 .819 30 US-born Population difference .833 .898 .812 .1305 .868 90 All Population difference .804 .677 .627 .12.015 .644 90 VI-born Unweighted .679 .693 .639 .12.015 .670 90 US-born Unweighted .679 .693 .639 .12.015 .670 90 US-born Unweighted .629 .616 .556 .08.945	10	All	Unweighted	.844	.844	.711	135	.800
US-born Population difference .927 .956 .870 135 .918 30 All Unweighted .768 .726 .632 1305 .709 30 All Population difference .887 .853 .716 1305 .709 30 All Population difference .887 .853 .716 1305 .753 30 US-born Inweighted .782 .784 .694 1305 .753 30 US-born Population difference .893 .898 .812 1305 .868 90 All Population difference .804 .779 .627 12.015 .737 90 US-born Unweighted .679 .693 .639 12.015 .670 90 US-born Unweighted .629 .616 .556 108.945 .600 270 All Population difference .717 .695 .588 108.945 .667 <td>10</td> <td>All</td> <td>Population difference</td> <td>.927</td> <td>.944</td> <td>.852</td> <td>135</td> <td>.908</td>	10	All	Population difference	.927	.944	.852	135	.908
30 All Unweighted .768 .726 .632 1305 .709 30 All Population difference .887 .853 .716 1305 .819 30 US-born Unweighted .782 .784 .694 1305 .869 30 US-born Population difference .893 .898 .812 1305 .664 90 All Unweighted .664 .667 .58 12,015 .674 90 US-born Inweighted .679 .693 .639 12,015 .679 90 US-born Inweighted .679 .693 .639 12,015 .670 90 US-born Inweighted .679 .693 .639 12,015 .670 90 US-born Inweighted .629 .616 .556 108,945 .600 270 All Population difference .717 .695 .588 108,945 .667	10	US-born	Unweighted	.844	.889	.756	135	.830
30 All Population difference .887 .853 .716 1305 .819 30 US-born Unweighted .782 .784 .694 1305 .879 30 US-born Population difference .893 .898 .812 1305 .868 90 All Unweighted .684 .667 .58 12.015 .644 90 All Population difference .804 .779 .627 12.015 .679 90 US-born Unweighted .679 .693 .639 12.015 .670 90 US-born Unweighted .679 .609 .727 12.015 .778 270 All Unweighted .629 .616 .556 108.945 .600 270 JAll Unweighted .624 .635 .588 108.945 .617 270 JS-born Unweighted .624 .635 .589 108.945 .616	10	US-born	Population difference	.927	.956	.870	135	.918
30 US-born Unweighted .782 .784 .694 1305 .753 30 US-born Population difference .893 .898 .812 .1305 .868 90 All Unweighted .684 .667 .58 12,015 .737 90 All Population difference .804 .779 .627 12,015 .737 90 US-born Population difference .799 .609 .639 12,015 .670 90 US-born Unweighted .679 .693 .639 12,015 .778 90 US-born Population difference .799 .809 .727 12,015 .778 270 All Unweighted .629 .616 .556 108,945 .6607 270 JL Population difference .717 .695 .588 108,945 .667 270 JL Population difference .617 .595 .588 10	30	All	Unweighted	.768	.726	.632	1305	.709
30 US-born Population difference .893 .898 .812 1305 .868 90 All Unweighted .684 .667 .58 12,015 .644 90 All Population difference .804 .779 .627 12,015 .737 90 US-born Unweighted .679 .693 .639 12,015 .670 90 US-born Unweighted .679 .693 .639 12,015 .778 90 US-born Population difference .799 .809 .727 12,015 .778 270 All Unweighted .629 .616 .556 108,945 .600 270 All Population difference .717 .695 .588 108,945 .667 270 All Population difference .624 .635 .589 108,945 .661 270 JUS-born Unweighted .624 .635 .589 108,945<	30	All	Population difference	.887	.853	.716	1305	.819
90 All Unweighted .684 .667 .58 12.015 .644 90 All Population difference .804 .779 .627 12.015 .674 90 US-born Unweighted .679 .693 .639 12.015 .670 90 US-born Population difference .799 .809 .727 12.015 .778 270 All Unweighted .629 .616 .556 108.945 .607 270 All Population difference .717 .695 .588 108.945 .667 270 JL Douglation difference .624 .635 .589 108.945 .617	30	US-born	Unweighted	.782	.784	.694	1305	.753
O All Population difference .804 .779 .627 12.015 .737 90 US-born Unweighted .679 .693 .639 12.015 .670 90 US-born Population difference .799 .809 .727 12.015 .670 90 US-born Population difference .799 .809 .727 12.015 .670 270 All Unweighted .629 .616 .556 108.945 .660 270 All Population difference .717 .695 .588 108.945 .667 270 US-born Unweighted .624 .635 .589 108.945 .616	30	US-born	Population difference	.893	.898	.812	1305	.868
90 US-born Unweighted .679 .693 .639 12.015 .670 90 US-born Population difference .799 .809 .727 12.015 .778 270 All Unweighted .629 .616 .556 108.945 .660 270 All Population difference .717 .695 .588 108.945 .660 270 All Population difference .717 .695 .588 108.945 .667 270 LS-born Unweighted .624 .635 .589 108.945 .616	90	All	Unweighted	.684	.667	.58	12,015	.644
90 US-born Population difference .799 .809 .727 12,015 .778 270 All Unweighted .629 .616 .556 108,945 .600 270 All Population difference .717 .695 .588 108,945 .607 270 JL Population difference .717 .695 .588 108,945 .607 270 US-born Unweighted .624 .635 .589 108,945 .616	90	All	Population difference	.804	.779	.627	12,015	.737
270 All Unweighted .629 .616 .556 108,945 .600 270 All Population difference .717 .695 .588 108,945 .667 270 US-born Unweighted .624 .635 .589 108,945 .616	90	US-born	Unweighted	.679	.693	.639	12,015	.670
Population difference .717 .695 .588 108,945 .667 270 US-born Unweighted .624 .635 .589 108,945 .616	90	US-born	Population difference		.809	.727	12,015	.778
270 US-born Unweighted .624 .635 .589 108,945 .616	270	All	Unweighted	.629	.616	.556	108,945	.600
	270	All	Population difference	.717	.695	.588	108,945	.667
270 US-born Population difference .712 .726 .647 108,945 .695	270	US-born	Unweighted	.624	.635	.589	108,945	.616
	270	US-born	Population difference	.712	.726	.647	108,945	.695

Davis & Dingel (Columbia/Chicago Booth) The Comparative Advantage of Cities

э

< 🗇 🕨

Table: Pairwise comparisons of nine skill groups with one city per bin

Uı	Unweighted comparisons								
		LHS	HSD	HS	CD	AA	BA	MA	Pro
2	HSD	.423							
3	HS	.399	.413						
4	CD	.428	.486	.587					
5	AA	.43	.483	.571	.483				
6	BA	.476	.555	.644	.619	.602			
7	MA	.484	.558	.643	.614	.615	.528		
8	Pro	.484	.57	.645	.617	.604	.524	.499	
9	PhD	.49	.548	.598	.576	.577	.521	.501	.511
Pop-diff weighted comparisons of US-born population									
Po	op-diff	weigh	ted co	mparis	ons of	f US-b	orn po	opulati	ion
Po	op-diff	weigh LHS	ted co HSD	mparis HS	cD	f US-b AA	orn po BA	opulat MA	ion Pro
Рс 2	pp-diff HSD								
	•	LHS							
2	HSD	LHS .568	HSD						
2 3	HSD HS	LHS .568 .488	HSD .435	HS					
2 3 4	HSD HS CD	LHS .568 .488 .583	HSD .435 .569	HS .649	CD				
2 3 4 5	HSD HS CD AA	LHS .568 .488 .583 .552	HSD .435 .569 .53	HS .649 .616	CD .453	AA			
2 3 4 5 6	HSD HS CD AA BA	LHS .568 .488 .583 .552 .644	HSD .435 .569 .53 .65	.649 .616 .738	CD .453 .695	AA .682	BA		

< □ > < ---->

Pairwise comparisons: 22 occupations

Bins	Weights	Comparisons	Success rate
2	Unweighted	231	.714
2	Population difference	231	.714
2	Population difference \times skill difference	231	.775
3	Unweighted	693	.688
3	Population difference	693	.694
3	Population difference \times skill difference	693	.736
5	Unweighted	2,310	.684
5	Population difference	2,310	.71
5	Population difference \times skill difference	2,310	.756
10	Unweighted	10,395	.653
10	Population difference	10,395	.689
10	Population difference \times skill difference	10,395	.735
30	Unweighted	100,485	.599
30	Population difference	100,485	.628
30	Population difference \times skill difference	100,485	.662
90	Unweighted	925,155	.564
90	Population difference	925,155	.582
90	Population difference \times skill difference	925,155	.606
276	Unweighted	8,073,382	.543
276	Population difference	8,073,382	.571
276	Population difference \times skill difference	8,073,382	.598

Pairwise comparisons: 21 manufacturing industries

Bins	Weights	Comparisons	Success rate
2	Unweighted	210	.648
2	Population difference	210	.648
2	Population difference \times skill difference	210	.767
3	Unweighted	630	.637
3	Population difference	630	.64
3	Population difference \times skill difference	630	.736
5	Unweighted	2100	.63
5	Population difference	2100	.629
5	Population difference \times skill difference	2100	.715
10	Unweighted	9450	.589
10	Population difference	9450	.604
10	Population difference \times skill difference	9450	.678
30	Unweighted	91,350	.559
30	Population difference	91,350	.577
30	Population difference \times skill difference	91,350	.631
90	Unweighted	817,344	.536
90	Population difference	817,344	.545
90	Population difference \times skill difference	817,344	.576
276	Unweighted	6,183,770	.529
276	Population difference	6,183,770	.538
276	Population difference \times skill difference	6,183,770	.558